If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+33x+78=0
a = 3; b = 33; c = +78;
Δ = b2-4ac
Δ = 332-4·3·78
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-3\sqrt{17}}{2*3}=\frac{-33-3\sqrt{17}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+3\sqrt{17}}{2*3}=\frac{-33+3\sqrt{17}}{6} $
| 2p-104=180 | | 6v^2+27v=0 | | 1/4x-2/4=x-5 | | 2/3x-2/6=1/9 | | 5000x=400 | | 13+7x=4x+6-12x | | -4(-x-1(+2x+3=43 | | 4(5-x)=4x+20 | | 36=-7w+5(w+4) | | -4w+6w=16 | | F(3)=-4x+8 | | 2(a-1)=6a | | 4x-9=2x(5+2x) | | 10x^-5x=7 | | (4^3x)=(2^2x-8) | | 4(y-36)=40 | | 8=16-3e | | 100/5x5=0 | | 16x^2+25x+36=0 | | 1/4e=-6 | | 4t/5-1=4t-4/4+1 | | 37+5+3y=180 | | -14+16y=-16 | | 5-6(6-y)=6 | | ((3^m)-(2^m))=65 | | -1/4+1/6y=-1/6 | | 1/3(3/4a-6)=1/2a+1 | | 91v+81v-74v=98 | | -75v+25v-12v+52v+35=-85 | | -2(9x-1=-(x-9)-7x | | 4(b+3)-1=15 | | -17c=-19-10 |